# Convergence of Padé Approximants for a Certain Class of Meromorphic Functions 

N. R. Franzen<br>Department of Mathematics, Oregon State University, Carvallis, Oregon 97331<br>Communicated by Oved Shisha

Received October 30, 1969

## DEDICATED TO PROFESSOR J. L. WALSH ON THE OCCASION OF HIS 75TH BIRTHDAY

In [1] we considered the convergence of diagonal sequences of Padé approximants of meromorphic functions of the special type

$$
\begin{equation*}
f(x)=\sum_{i=1}^{\infty} \frac{A_{i}}{a_{i}-x} \tag{1}
\end{equation*}
$$

where the $A_{i}$ and $a_{i}$ are complex numbers satisfying

$$
\sum_{i=1}^{\infty}\left|\frac{A_{i}}{a_{i}}\right|<\infty
$$

The method utilized certain series expansions for the persymmetric determinants $\Delta_{m-1, n}=\left|c_{n+i-j}\right|_{i, j=0}^{m-1}$, namely,

$$
\begin{aligned}
\Delta_{m-1, n}= & (-1)^{m(m-1) / 2} \sum_{k_{1}<k_{2}<\cdots<k_{m}} A_{k_{1}} A_{k_{2}} \cdots A_{k_{m}}\left(a_{k_{1}} a_{k_{2}} \cdots a_{k_{m}}\right)^{-(n+m)} \\
& \times \prod_{1 \leqslant i<j \leqslant m}\left(a_{k_{j}}-a_{k_{i}}\right)^{2}
\end{aligned}
$$

where

$$
f(x)=\sum_{n=0}^{\infty} c_{n} x^{n}
$$

and so

$$
c_{n}=\sum_{i=0}^{\infty} \frac{A_{i}}{a_{i}^{n+1}} .
$$

We use this expansion below to give an elementary treatment of the convergence of diagonal sequences of Padé approximants of functions of the form

$$
\begin{align*}
f(x)= & c_{0}+c_{1}+\cdots+c_{r-1} x^{r-1}  \tag{2}\\
& +\sum_{i=1}^{\infty} A_{i}\left[\frac{1}{a_{i}-x}-\frac{1}{a_{i}}-\frac{x}{a_{i}{ }^{2}}-\cdots-\frac{x^{r-1}}{a_{i}{ }^{r}}\right]
\end{align*}
$$

satisfying the conditions:
(i) the $c_{i} ; i=0,1, \ldots, r-1$ are arbitrary complex numbers,
(ii) the $A_{i}$ are real,
(iii) the $a_{i}$ lie on a line $L$ through the origin, i.e., for some $\theta$, $a_{i}=d_{i} e^{i \theta}$ for all $i$ with the $d_{i}$ real, and
(iv) $0<\left|d_{1}\right|<d_{2}\left|<d_{3}\right|<\cdots$ with $\sum_{i=1}^{\infty}\left|A_{i} / d_{i}^{r+1}\right|<\infty$.

When $r=0$, we take $f(x)$ to be of the form (1). Let $S_{\theta}$ denote the part of the line $L$ given by

$$
S_{\theta}=\left\{\begin{array}{ll}
\left\{x: \arg x=\theta,|x| \geqslant d_{1}\right\} & \text { if } \quad d_{i}>0
\end{array} \quad \text { for all } i,\right.
$$

We let $f_{m, n}(x)=P_{m, n}(x) / Q_{m, n}(x)$ denote the reduced ( $m, n$ )-Padé approximant of $f(x)$. We have the following theorem.

Theorem. Let $f(x)$ be as described in (2). If $p$ is an integer such that $p \geqslant r-1$ and $A_{i} / d_{i}{ }^{p}>0$ for all $i$, then the sequence $\left\{f_{m, m+p}(x)\right\}$ converges to $f(x)$ uniformly on any compact set bounded away from $S_{\theta}$.

Remark. When $r=0$ and $p=-1$ we interpret the sequence of approximants as the diagonal file lying immediately below the principal diagonal file of the Padé table.

The theorem covers three cases.
Case $A$. If $A_{i}>0$ and $d_{i}>0$ for all $i$, we may take $p \geqslant r-1$ to be arbitrary.

Case B. If $A_{i}>0$ for all $i$, but $d_{i}<0$ for some $i$, we take $p \geqslant r-1$ to be even.

Case C. If sign $A_{i}=\operatorname{sign} d_{i}$ for all $i$, we take $p \geqslant r-1$ to be odd.
To facilitate the exposition of the proof of the theorem we list some notation and formulas which were given in [1] in slightly modified form:
(3) $\Delta_{m, n}^{(i)}$ and $\Delta_{m, n}(x)$ are the determinants obtained from $\Delta_{m, n}$ by replacing the first row by $c_{n+m+i}, c_{n+m+i-1}, \ldots, c_{n+i}$ and by $1, x, x^{2}, \ldots, x^{m}$, respectively.
(4) Let $S(m)$ denote the set of all $m$-tuples ( $k_{1}, k_{2}, \ldots, k_{m}$ ) of positive integers such that $k_{1}<k_{2}<\cdots<k_{m}$. For every $k \in S(m)$, define

$$
T_{m, m+p}^{k}=A_{k_{1}} A_{k_{2}} \cdots A_{k_{m}}\left(d_{k_{1}} d_{k_{2}} \cdots d_{k_{m}}\right)^{-(2 m+p)} \prod_{1 \leqslant i<j \leqslant m}\left(d_{k_{j}}-d_{k_{i}}\right)^{2} .
$$

(5) For $p \geqslant r-1$,

$$
\Delta_{m-1, m+p}=(-1)^{m(m-1) / 2} e^{-m(m+p+1) i \theta} \sum_{k \in S(m)} T_{m, m+p}^{k}
$$

(6) If $p \geqslant r-1$,

$$
\Delta_{m, m+p}(x)=(-1)^{m(m-1) / 2} e^{-m(m+p+1) i \theta} \sum_{k \in S(m)} T_{m, m+p}^{k} \prod_{v=1}^{m}\left(1-\frac{x}{a_{k_{v}}}\right) .
$$

(7) For $\Delta_{m-1, m+p} \neq 0$,

$$
Q_{m, m+p}(x)=\Delta_{m, m+p}(x) / \Delta_{m-1, m+p}
$$

(8) If $\Delta_{m-1, m+p} \neq 0$,

$$
f(x) Q_{m, m+p}(x)-P_{m, m+p}(x)=\Delta_{m-1, m+\nu}^{-1} \sum_{i=1}^{\infty} \Delta_{m, m+p}^{(i)} x^{2 m+p+i} .
$$

(9) If $\Delta_{m-1, n} \neq 0$ and $n \geqslant m-1$,

$$
\begin{align*}
& P_{m+1, n+1} Q_{m, n}-P_{m, n} Q_{m+1, n+1}=(-1)^{m}\left(\Delta_{m, n+1} / \Delta_{m-1, n}\right) x^{m+n+1} . \\
&  \tag{10}\\
& \quad \frac{P_{m, m+p}}{Q_{m, m+p}}=\frac{P_{0, p}}{Q_{0, p}}+\sum_{i=0}^{m-1}(-1)^{i} \frac{\Delta_{i, i+p+1}}{\Delta_{i-1, i+p}} \frac{x^{2 i+p+1}}{Q_{i, i+p} Q_{i+1, i+p+1}} \\
& \text { if } \quad \Delta_{i-1, i+p} \neq 0 \quad \text { for } \quad i=0,1, \ldots, m-1 .
\end{align*}
$$

The expansions (5) and (6) were originally given only in the case where $r=0$ and $\theta=0$. That they remain valid for functions of the form (2), when $p \geqslant r-1$, is easily seen from the fact that the determinants $\Delta_{m-1, m+p}$ and $\Delta_{m, m+p}(x)$ involve only the $c_{n}$ for $n \geqslant r$ and we have for $n \geqslant r$ that

$$
c_{n}=\sum_{i=1}^{\infty} \frac{A_{i}}{a_{i}^{n+1}} .
$$

The formulas then follow as in [1].
In order to discuss the convergence of the sum (10) we will need appropriate estimates for the quantities $\left|\Delta_{i, i+p+1}\right| \Delta_{i-1, i+p} \mid$ and $\left|Q_{i, i+p}(x)\right|$. These are obtained in the following lemmas.

Lemma 1. Under the conditions of the theorem, $\Delta_{m-1, m+p} \neq 0$ for all $m$ and

$$
\left|\Delta_{m, m+p+1}\right| \Delta_{m-1, m+p}\left|\leqslant\left|c_{p+1}\right|\right| a_{1} a_{2} \cdots a_{m}|2 \cdot 2 \cdots 2|^{-2}
$$

Proof. Observe that because $A_{i} / d_{i}{ }^{p}>0$ for all $i$, it follows from (4) that $T_{m, m+p}^{k}>0$ for all $k \in S(m)$. Hence

$$
\begin{aligned}
\left|\Delta_{m-1, m+p}\right| & =\left|(-1)^{m(m-1) / 2} e^{-m(m+p+1) i \theta} \sum_{k \in S(m)} T_{m, m+p}^{k}\right| \\
& =\sum_{k \in S(m)} T_{m, m+p}^{k}>0
\end{aligned}
$$

Also

$$
\begin{aligned}
\left|\Delta_{m, m+p+1}\right|= & \sum_{k^{\prime} \in S(m+1)} T_{m+1, m+p+1}^{k^{\prime}} \\
= & \sum_{k \in S(m)}\left[T_{m, m+p}^{k}\left(d_{k_{1}} d_{k_{2}} \cdots d_{k_{m}}\right)^{-2}\right. \\
& \left.\times\left(\sum_{i=k_{m}+1}^{\infty} \frac{A_{i}}{d_{i}^{p+2}}\right)\left(1-\frac{d_{k_{m}}}{d_{k_{m+1}}}\right)^{2} \cdots\left(1-\frac{d_{k_{1}}}{d_{k_{m+1}}}\right)^{2}\right] \\
\leqslant & \left(\sum_{k \in S(m)} T_{m, m+p}^{k}\right)\left|a_{1} a_{2} \cdots a_{m}\right|^{-2}\left(\sum_{i=m+1}^{\infty} \frac{A_{i}}{d_{i}^{p+2}}\right) 2^{2 m} \\
\leqslant & \left|\Delta_{m-1, m+p}\right|\left|a_{1} a_{2} \cdots a_{m} / 2 \cdot 2 \cdots 2\right|^{-2}\left|c_{p+1}\right|
\end{aligned}
$$

This proves the lemma.
Let $\tilde{f}(x)$ denote the function obtained from $f(x)$ by setting $\theta=0$, so that $a_{i}=d_{i}$. Let $\tilde{J}_{m-1, m+p}, \widetilde{J}_{m, m+p}(x), \tilde{P}_{m, m+p}(x)$ and $\tilde{Q}_{m, m+p}(x)$ denote quantities corresponding to $\tilde{f}(x)$. We then have:

Lemma 2. The polynomials $\tilde{Q}_{m, m+p}(x)$ have only real zeroes.
Proof. From the identity

$$
\begin{aligned}
& \tilde{P}_{m+2, m+p+2} \tilde{Q}_{m, m+p}-\tilde{P}_{m, m+p} \tilde{Q}_{m+2, m+p+2} \\
& \quad \equiv\left[\tilde{f}(x) \tilde{Q}_{m, m+p}-\tilde{P}_{m, m+p}\right] \tilde{Q}_{m+2, m+p+2} \\
& \quad-\left[\tilde{f}(x) \tilde{Q}_{m+2, m+p+2}-\tilde{P}_{m+2, m+p+2}\right] \tilde{Q}_{m, m+p}
\end{aligned}
$$

and (8), we see that the right-hand side is divisible by $x^{2 m+p+1}$. Hence since the left-hand side is a polynomial of degree at most $2 m+p+2$ it must have the form

$$
\begin{equation*}
\left(r_{m, m+p}^{\prime}+s_{m, m+p}^{\prime} x\right) x^{2 m+p+1} \tag{11}
\end{equation*}
$$

From (9) we obtain

$$
\begin{align*}
& \tilde{P}_{m+1, m+p+1} \tilde{Q}_{m, m+p}-\tilde{P}_{m, m+p} \tilde{Q}_{m+1, m+p+1}  \tag{12}\\
& \quad=(-1)^{m}\left(\tilde{J}_{m, m+p+1} / \tilde{J}_{m-1, m+p}\right) x^{2 m+p+1}
\end{align*}
$$

and

$$
\begin{gathered}
\tilde{P}_{m+2, m+p+2} Q_{m+1, m+p+1}-\tilde{P}_{m+1, m+p+1} \tilde{Q}_{m+2, m+p+2} \\
=(-1)^{m+1}\left(\tilde{J}_{m+1, m+p+1} / \tilde{\Delta}_{m, m+p}\right) x^{2 m+p+3}
\end{gathered}
$$

Substituting (11) and (12) into the identity

$$
\begin{aligned}
{\left[\tilde{P}_{m+1, m+p+1}\right.} & \left.\tilde{Q}_{m, m+p}-\tilde{P}_{m, m+p} \tilde{Q}_{m+1, m+p+1}\right] \\
& \quad+\left[\tilde{Q}_{m+2, p+p} \tilde{Q}_{m+2, m+p+2}-\tilde{P}_{m+2, m+p+2}\right. \\
\left.\tilde{Q}_{m, m+p}\right] & \tilde{Q}_{m+1, m+p+1} \\
\equiv & {\left[\tilde{P}_{m+1, m+p+1} \tilde{Q}_{m+2, m+p+2}-\tilde{P}_{m+2, m+p+2} \tilde{Q}_{m+1, m+p+1}\right] \tilde{Q}_{m, m+p} }
\end{aligned}
$$

yields the equation

$$
\begin{aligned}
& (-1)^{m} \frac{\tilde{J}_{m, m+p+1}}{\widetilde{J}_{m-1, m+p}} x^{2 m+p+1} \tilde{Q}_{m+2, m+p+2}-\left(r_{m, m+p}^{\prime}+s_{m, m+p}^{\prime} x\right) x^{2 m+p+1} \tilde{Q}_{m+1, m+p+1} \\
& \quad=(-1)^{m}\left({\widetilde{\Lambda_{m+1, m+p+2}}}\right) /\left({\tilde{\Lambda_{m, m+p+1}}}\right) x^{2 m+p+3} \tilde{Q}_{m, m+p}
\end{aligned}
$$

On dividing this equation by $(-1)^{m}\left(\tilde{J}_{m, m+p+1} / \widetilde{J}_{m-1, m+p}\right) x^{2 m+p+1}$ and transposing we get

$$
\begin{aligned}
\tilde{Q}_{m+2, m+p+2}= & \left(r_{m, m+p}^{\prime \prime}+s_{m, m+p}^{\prime \prime} x\right) \tilde{Q}_{m+1, m+p+1} \\
& +\left(\tilde{\Lambda}_{m-1, m+p} \tilde{\Delta}_{m+1, m+p+1} / \tilde{J}_{m, m+p+1}^{2}\right) x^{2} \tilde{Q}_{m, m+p}
\end{aligned}
$$

Setting $x=0$ and using the fact that $Q_{m, n}(0)=1$ it follows that $r_{m, m+p}^{\prime \prime}=1$. Then introducing the notation

$$
\begin{aligned}
& s_{m, m+p}=s_{m, m+p}^{\prime \prime} \\
& t_{m, m+p}=-\left(\tilde{J}_{m-1, m+p} \tilde{J}_{m+1, m+p+1} / \tilde{\Delta}_{m, m+p+1}^{2}\right)
\end{aligned}
$$

one gets

$$
\begin{equation*}
\tilde{Q}_{m+2, m+p+2}=\left(1+s_{m, m+p} x\right) \tilde{Q}_{m+1, m+p+1}-t_{m, m+p} x^{2} \tilde{Q}_{m, m+p} \tag{13}
\end{equation*}
$$

The numbers $s_{m, m+p}$ and $t_{m, m+p}$ are real and in fact using (4) and (5) it is easy to see that $t_{m, m+p}>0$. Now consider the new polynomials defined by

$$
\begin{equation*}
Q_{m, m+p}^{*}(x)=x^{m} \tilde{Q}_{m, m+p}\left(\frac{1}{x}\right) \tag{14}
\end{equation*}
$$

From (13) and (14) it follows that

$$
\begin{equation*}
Q_{m+2, m+p+2}^{*}=\left(s_{m, m+p}+x\right) Q_{m+1, m+p+1}^{*}-t_{m, m+p} Q_{m, m+p}^{*} \tag{15}
\end{equation*}
$$

One now proceeds as in the theory of $G$-fractions; see [2, p. 204]. Let

$$
\begin{equation*}
Q_{m, m+p}^{*}(\bar{x}) Q_{m+1, m+p+1}^{*}(x)=X_{m, m+p}+i Y_{m, m+p} \tag{16}
\end{equation*}
$$

Multiplying both sides of (15) by $Q_{m+1, m+p+1}^{*}(\bar{x})$ and equating imaginary parts we get

$$
Y_{m+1, m+p+1}=\eta\left|Q_{m+1, m+p+1}^{*}\right|^{2}+t_{m, m+p} Y_{m, m+p},
$$

where $x=\xi+i \eta$. Hence, if $\eta \neq 0$,

$$
Y_{m+1, m+p+1} / \eta \geqslant t_{m, m+p}\left(Y_{m, m+\boldsymbol{p}} / \eta\right),
$$

and since $Y_{0, p}=\eta$ it follows that

$$
\begin{equation*}
\frac{Y_{m+1, m+p+1}}{\eta} \geqslant \prod_{i=0}^{m} t_{i, i+p}>0 . \tag{17}
\end{equation*}
$$

From (16) and (17) we see that if $\eta \neq 0$, then $Q_{m+1, m+p+1}^{*}(x) \neq 0$, and hence the polynomial has only real zeroes. Since the roots of $\tilde{Q}_{m+1, m+p+1}(x)$ are the reciprocals of the roots of $Q_{m+1, m+p+1}^{*}$, the lemma follows.

Lemma 3. The polynomials $Q_{m, m+p}(x)$ have all their zeroes in the set $S_{\theta}$, and, in fact, for any compact set $G$, bounded away from $S_{\theta}$, there exists a $\delta>0$ such that

$$
\left|Q_{m, m+p}(x)\right| \geqslant \delta^{m} \quad \text { for all } \quad x \in G .
$$

Proof. From (4)-(7) it follows easily that

$$
\Delta_{m-1, m+p}=\exp (-m(m+p+1) i \theta) \tilde{\Delta}_{m-1, m+p},
$$

and

$$
\Delta_{m, m+p}(x)=\exp (-m(m+p+1) i \theta) \tilde{J}_{m, m+p}\left(x e^{-i \theta}\right),
$$

so that

$$
Q_{m, m+p}(x)=\tilde{Q}_{m, m+p}\left(x e^{-i \theta}\right) .
$$

It is therefore sufficient to prove the lemma in the case $\theta=0$. Hence we consider the function $\tilde{f}(x)$ introduced above and we assume that $G$ is bounded away from $S_{0}$.

For $0<\delta_{1}<\left|a_{1}\right|$, define

$$
\begin{aligned}
& G_{1}\left(\delta_{1}\right)=\left\{x:|\operatorname{Im}(x)| \geqslant \delta_{1}\right\}, \\
& G_{2}\left(\delta_{1}\right)=\left\{x:|\operatorname{Re}(x)| \leqslant\left|a_{1}\right|-\delta_{1}\right\}, \\
& G_{3}\left(\delta_{1}\right)=\left\{x: \operatorname{Re}(x) \leqslant\left|a_{1}\right|-\delta_{1}\right\} .
\end{aligned}
$$

Now since $G$ is bounded away from $S_{0}$, we may choose $\delta_{1}>0$ such that

$$
\begin{align*}
& G \subseteq G_{1}\left(\delta_{1}\right) \cup G_{3}\left(\delta_{1}\right) \quad \text { in case A, and }  \tag{18}\\
& G \subseteq G_{1}\left(\delta_{1}\right) \cup G_{2}\left(\delta_{1}\right) \quad \text { in cases } \mathbf{B} \text { and } \mathrm{C} .
\end{align*}
$$

Since $G$ is bounded, choose $R$ such that $G \subseteq\{x:|x| \leqslant R\}$. We claim that $\delta=\delta_{1} / R$ satisfies the requirements of the lemma. To show this, let $u_{1}, u_{2}, \ldots u_{m}$ denote the roots of $\tilde{Q}_{m, m+p}(x)$. From (14) we have

$$
\begin{aligned}
\left|\tilde{Q}_{m, m+p}(x)\right| & =|x|^{m}\left|Q_{m, m+p}^{*}\left(\frac{1}{x}\right)\right|=|x|^{m} \prod_{i=1}^{m}\left|\frac{1}{x}-\frac{1}{u_{i}}\right| \\
& \geqslant|x|^{m} \prod_{i=1}^{m}\left|\operatorname{Im}\left(\frac{1}{x}-\frac{1}{u_{i}}\right)\right|=|x|^{m} \prod_{i=1}^{m}\left|\operatorname{Im}\left(\frac{1}{x}\right)\right| \\
& =|x|^{m}\left(\frac{|\eta|}{|x|^{2}}\right)^{m}=\left|\frac{\eta}{x}\right|^{m}
\end{aligned}
$$

Therefore for $x \in G_{1}\left(\delta_{1}\right) \cap G$ we have

$$
\begin{equation*}
\left|Q_{m, m+p}(x)\right| \geqslant|\eta / x|^{m} \geqslant\left(\delta_{1} / R\right)^{m}=\delta^{m} \tag{19}
\end{equation*}
$$

Furthermore, since $\left|1-\left(x / u_{i}\right)\right| \geqslant\left|1-\left(\xi / u_{i}\right)\right|$ we get

$$
\left|\tilde{Q}_{m, m+p}(x)\right|=\prod_{i=1}^{m}\left|1-\left(x / u_{i}\right)\right| \geqslant \prod_{i=1}^{m}\left|1-\left(\xi \mid u_{i}\right)\right|=\left|\tilde{Q}_{m, m+p}(\xi)\right| .
$$

Assume $x \in G_{2}\left(\delta_{1}\right)$. Then

$$
\left.\xi\left|a_{i} \leqslant|\xi| a_{i}\right| \leqslant\left|\xi / a_{1}\right| \leqslant\left|a_{1}\right|-\delta_{1}\right) /\left|a_{1}\right|=1-\delta_{1}| | a_{1} \mid
$$

so that

$$
1-\xi\left|a_{i} \geqslant \delta_{1} /\left|a_{1}\right| \geqslant \delta_{1} / R=\delta\right.
$$

Hence for all $k \in S(m)$,

$$
\prod_{\nu=1}^{m}\left(1-\xi / a_{k_{\nu}}\right) \geqslant \delta^{m}
$$

It therefore follows from (5)-(7) and the fact that $T_{m, m+p}^{k}>0$ that

$$
\begin{equation*}
\left|\tilde{Q}_{m, m+p}(x)\right| \geqslant\left|\tilde{Q}_{m, m+p}(\xi)\right| \geqslant \delta_{m} \tag{20}
\end{equation*}
$$

The lemma now follows in cases B and C by (18)-(20).
In case A, $a_{i}>0$ for all $i$ so that for $x \in G_{3}\left(\delta_{1}\right)$,

$$
\xi / a_{i} \leqslant\left(a_{1}-\delta_{1}\right) / a_{1}=1-\delta_{1} / a_{1},
$$

and hence $1-\xi / a_{i} \geqslant \delta_{1} / a_{1} \geqslant \delta_{1} / R=\delta$. Consequently we get, as before, $\left|\tilde{Q}_{m, m+p}(x)\right| \geqslant\left|\tilde{Q}_{m, m+p}(\xi)\right| \geqslant \delta^{m}$. This together with (18) proves the lemma in case A as well.

Proof of the Theorem. Let $G$ be as in the last lemma. Hence $G \subseteq\{x:|x| \leqslant R\}$ and there exists $\delta>0$ such that $\left|Q_{i, i+p}(x)\right| \geqslant \delta^{i}$ for all $x \in G$ and for all $i$. Choose $N$ such that

$$
\left|a_{N}\right|>4 R / \delta,
$$

and so

$$
\left|2 R / a_{i} \delta\right|<\frac{1}{2} \quad \text { for } \quad i \geqslant N .
$$

By Lemma 1,

$$
\begin{aligned}
& \left|(-1)^{i} \frac{\Delta_{i, i+p+1}}{\Delta_{i-1, i+p}} \frac{x^{2 i+p+1}}{Q_{i, i+p} Q_{i+1, i+p+1}}\right| \\
& \quad \leqslant\left|c_{p+1}\right|\left|\frac{a_{1} a_{2} \cdots a_{i}}{2 \cdot 2 \cdots 2}\right|^{-2} \frac{R^{2 i+p+1}}{\delta^{i} \delta^{i+1}}=\left|c_{p+1}\right| \frac{R^{p+1}}{\delta}\left|\frac{2 R}{a_{1} \delta} \frac{2 R}{a_{2} \delta} \cdots \frac{2 R}{a_{i} \delta}\right|^{2} \\
& \quad \leqslant\left|c_{p+1}\right| \frac{R^{p+1}}{\delta}\left|\frac{2 R}{a_{1} \delta} \cdots \frac{2 R}{a_{N} \delta}\right|^{2}\left(\frac{1}{2^{i-N}}\right)^{2} \leqslant M 4^{-i}, \quad \text { for all } x \in G .
\end{aligned}
$$

It follows that the sum (10) converges uniformly to a holomorphic function $g(x)$ in $G$. Since we also have uniform convergence in a neighborhood of the origin and since $f_{m, m+p}^{(n)}(0)=n!c_{n}$ for $n<2 m+1$ we see that $g_{(0)}^{(n)}=n!c_{n}$. Hence $g(x)=f(x)$ for all $x \in G$. This completes the proof of the theorem.

Examples. Some simple examples to which our theorem applies are: $\tan x, \cot x-1 / x,\left[\Gamma^{\prime}(x) / \Gamma(x)\right]+(1 / x), \tanh x$ and $\operatorname{coth} x$.

## References

1. N. R. Franzen, Some convergence results for Padé approximants, J. Approximation Theory 6 (1972), 254-263.
2. O. Perron, "Die Lehre von den Kettenbruchen," p. 524, Volz, Stuttgart, 1957.
