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In [1] we considered the convergence of diagonal sequences of Pad6
approximants of meromorphic functions of the special type

(1)
00 A.

f(x) = L a. ~ x '
i=l ~

where the Ai and ai are complex numbers satisfying

The method utilized certain series expansions for the persymmetric deter
minants Ltm-l,n = I Cn+H I~jlo , namely,

where

and so

x n

00

f(x) = L cnxn
n~O
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We use this expansion below to give an elementary treatment of the conver
gence of diagonal sequences of Pade approximants of functions of the form

(2)

1 x x r
-

1
]_____ 0.

0
_

ai ai2 a/

satisfying the conditions:

(i) the Ci ; i = 0, 1,... , r - I are arbitrary complex numbers,

(ii) the Ai are real,

(iii) the ai lie on a line L through the origin, i.e., for some e,
ai = dieie for all i with the di real, and

(iv) 0 < Id1 I < d2 I < d3 I < .. , with L;~l I Ai/d[+l I < 00.

When r = 0, we takef(x) to be of the form (1). Let Se denote the part of the
line L given by

S = \{x: arg x = e, I x I ~ d1} if di > 0 for all i,
e /{x : x E L, I x I ~ I d1 !} if di < 0 for some i.

We let fm.n<x) = Pm.n(x)/Qm.n(x) denote the reduced (m, n)-Pade approxi
mant off(x). We have the following theorem.

THEOREM. Let f(x) be as described in (2). If p is an integer such that
p ~ r - 1 and Ai/d/ > 0 for all i, then the sequence Um.m+ix)} converges
to f(x) uniformly on any compact set bounded away from Se .

Remark. When r = 0 and p = -1 we interpret the sequence of approx
imants as the diagonal file lying immediately below the principal diagonal
file of the Pade table.

The theorem covers three cases.

Case A. If Ai > 0 and di > 0 for all i, we may take p ~ r - 1 to be
arbitrary.

Case B. If Ai > 0 for all i, but di < 0 for some i, we take p ~ r - 1 to
be even.

Case C. If sign Ai = sign di for all i, we take p ~ r - 1 to be odd.
To facilitate the exposition of the proof of the theorem we list some nota

tion and formulas which were given in [1] in slightly modified form:

(3) LI:':~n and Llm.n(x) are the determinants obtained from Llm.n by replacing
the first row by Cn+m+i , Cn+m+i-l ,... , Cn+i and by 1, x, x 2, ... , xm, respec
tively.
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(4) Let S(m) denote the set of all m-tuples (k1 , k2 , ••• , km ) of positive
integers such that k 1 < k 2 < ... < km • For every k E S(m), define

(5) For p ;;:: r - I,

Ll - (_1)m(m-l)/2 e-m (m+ P+l);8 " T k
m-l.m+p - L, m,m+p

kES(m)

(6) If p ;;:: r - I,

Ll (x) = (_I)m(m-l)/2 e-m(m+P+l);8 "Tk nm (1 -~)
m.m+p L, m,m+p a'

kES(m) y~1 k y

(7) For Llm-l.m+p =1= 0,

(8) If Llm- 1 ,m+p =1= 0,

00

f( ) Q () P () A-I "A(;) 2m+p+i
X m,m+p X - m,m+p X = "-I m-l,m+p L, "-Im,m+pX .

i~1

(9) If Llm-l. n =1= °and n ;;:: m - 1,

(10)

if Lli-l.i+p =1= ° for i = 0, I, ... ,m - I.

The expansions (5) and (6) were originally given only in the case where
r = 0 and () = 0. That they remain valid for functions of the form (2), when
p ;;:: r - I, is easily seen from the fact that the determinants Llm-l. m+p and
Llm,m+p(x) involve only the en for n ;;:: r and we have for n ;;:: r that

The formulas then follow as in [I].
In order to discuss the convergence of the sum (10) we will need appro

priate estimates for the quantities I Ll i ,i+P+lILl i- 1.i+P I and I Qi.i+ix)l. These
are obtained in the following lemmas.
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LEMMA 1. Under the conditions of the theorem, L1m- l •m+v F 0 for all m
and

I .1m.m+H1f.1m-l.fflH> I ~ I CD+l II a1a2 ... amf2 ·2 ... 2 1-2•

Proof Observe that because Aildl > 0 for all i, it follows from (4)
that T::'.m+p > 0 for all k E SCm). Hence

I A I -I (_1)m(m-1)/2 e-m(m+P+l)iB "rk I
~m-l,m+v - L. m.m+p

kES(m) I

L T:'. m+p > O.
k<oS\m)

Also

" k'I .1m.m+P+l I = L. Tm+l,m+p+1
k'<oS(m+!l

L [T:'.m+p(dk1 dk2 ••• dkm)-2
k<oS(m)

~ I .1m-1.m+p II a1a2 ... am/2 . 2 .. ·2 1-2 I CpH I.

This proves the lemma.
Letj(x) denote the function obtained from/ex) by setting e= 0, so that

Oi = di . Let 3m - l •mH> , J'm.m+p(x), 1'm.m+p(X) and Q""m+v(x) denote quanti
ties corresponding to j(x). We then have:

LEMMA 2. The polynomials Qm.m+ix) have only real zeroes.

Proof From the identity

1'm+2.m+p+2Qm.m+p - 1'm.m+p(/m+2,m+p+2

== [j(x) Qm.m+1> - 1'm.m+p] Qm+2.m+H2

- [j(x) Qm+2.m+P+2 - 1'm+2,"'+:1>+21 Qm.m+p

and (8), we see that the right-hand side is divisible by x2m+P+l. Hence since
the left-hand side is a polynomial of degree at most 2m +p + 2 it must
have the form

(11)
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From (9) we obtain
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(12)

and

_ (_l)m+l( A / A ) X2m+p+3- ~m+l,m+p+l ~m,m+p •

Substituting (11) and (12) into the identity

[pm+l,m+P+1Qm,m+p - Pm,m+pQm+1,m+P+1] Qm+2,m+p+2

+ [Pm ,m+pQm+2,m+p+2 - Pm+2,m+p+2Qm,m+p] Qm+1,m+P+1

[pm+1,m+P+1Qm+2,m+p+2 - Pm+2,m+p+2Qm+1,m+P+1] Qm,m+p

yields the equation

( l)m J'm,m+p+l 2m+p+IQ- ( I + I ) 2m+p+IQ-
- J' x m+2,m+p+2 - 'm,m+p Sm,m+pX X m+l,m+p+l

m-l,m+p

= (-l)m (J'm+1,m+p+2)/(J'm,m+P+1) X 2m+P+3Qm,m+p .

On dividing this equation by (-I)m(J'm,m+P+1/J'm_l,m+p) x2m+P+1 and trans
posing we get

Setting x = 0 and using the fact that Qm,n(O) = 1 it follows that
r;',m+p = 1. Then introducing the notation

Sm.m+:p = s~,m+'D ,

one gets

The numbers Sm,m+p and tm,m+p are real and in fact using (4) and (5) it is
easy to see that tm,m+p > O. Now consider the new polynomials defined by

(14) * ( m- (1)Qm,m+p x) = x Qm.m+p X .
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From (13) and (14) it follows that

One now proceeds as in the theory of G-fractions; see [2, p. 204]. Let

269

(16)

Multiplying both sides of (15) by Q;t;+l,m+P+l(x) and equating imaginary
parts we get

where x = g+ iTJ. Hence, if TJ =1= 0,

and since Yo,p = TJ it follows that

(17)

From (16) and (17) we see that if TJ =1= 0, then Q;t;+l.m+P+l(x) =1= 0, and hence
the polynomial has only real zeroes. Since the roots of Qm+l,m+P+l(x) are
the reciprocals of the roots of Q;t;+l,m+P+1 , the lemma follows.

LEMMA 3. The polynomials Qm,m+p(x) have all their zeroes in the set So,
and, in fact, for any compact set G, bounded away from So, there exists a
8 > °such that

for all x E G.

Proof From (4)-(7) it follows easily that

..::::lm-l,m+p = exp( -m(m +p + 1) i8) J'm-l,m+p ,

and

so that

It is therefore sufficient to prove the lemma in the case 8 = O. Hence we
consider the functionj(x) introduced above and we assume that G is bounded
away from So .
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For 0 < 01 < [a1 I , define
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(18)

G1(01) = {x: I Im(x) I ~ 01}'

G2(01) = {x: I Re(x) I ~ I a1 I - 01},

G3(01) = {x: Re(x) ~ I al I - 01}'

Now since G is bounded away from So, we may choose 01 > 0 such that

G C G1(01) u G3(01) in case A, and

G C G1(01) u G2(01) in cases Band C.

Since G is bounded, choose R such that G C {x: [ x I ~ R}. We claim that°= 01/R satisfies the requirements of the lemma. To show this, let
u1 , U2 , •.• Umdenote the roots ofQm,m+p(x). From (14) we have

m
r

1 1[ mill~ I x 1
m n1m (X- - J = I x 1

m n1m (X-)

= [x 1m (_11)_1)m = I!L 1m.
I X 1

2 x

Therefore for x E G1(01) n G we have

(19)

Furthermore, since I 1 - (x/U;) [ ~ I 1 - (~/u;)1 we get

m m

I Qm,m+p{x)1 = TIl 1 - (x/U;) I ~ TIl 1 - Wu;)1 = I Qm,m+1J(~)I.
i=l i=l

so that

Hence for all k E S(m),

m

TI (I - ~/akJ ~ am.
v=l
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It therefore follows from (5)-(7) and the fact that T~,m+p > 0 that

(20) I Qm,m+p(x) I ? I Qm,mH>(g) I ? Om'

The lemma now follows in cases Band C by (18)-(20).
In case A, ai > 0 for all i so that for x E G3(01),

tjai ~ (al - 0l)jal = 1 - 0ljal ,
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and hence 1 - gjai ? 0ljal ? 0ljR = O. Consequently we get, as before,
I Qm,m+p(x) I ? I Qm,m+p(g)1 ? om. This together with (18) proves the lemma
in case A as well.

Proof of the Theorem. Let G be as in the last lemma, Hence
G c: {x: I x I ~ R} and there exists 0 > 0 such that I Qi,i+p(x)1 ? Oi for all
x E G and for all i. Choose N such that

I aN I > 4Rjo,

and so

By Lemma 1,
12Rjai 0 I < t for i? N.

I
ala2 a 01-2 R2i+PH RP+l I 2R 2R 2R 12

~ I Cp+l I 2.2 i Oi Oi+l = I cP+l 1-0- a
1

8 a
2

0 ... ai 8

RP+l I 2R 2R 1
2( 1)2 0

~ ICpH I-8- alo ... aN 0 2i-N ~ M4-', for all x E G.

It follows that the sum (10) converges uniformly to a holomorphic function
g(x) in G. Since we also have uniform convergence in a neighborhood of
the origin and since j!::)m+p(O) = n !cn for n < 2m + 1 we see that
g:~: = n!cn • Hence g(x) = j(x) for all x E G. This completes the proof of
the theorem.

EXAMPLES. Some simple examples to which our theorem applies are:
tan x, cot x - Ijx, [T'(x)jT(x)] + (1jx), tanh x and coth x.
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